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The goals of this study were to develop a set of Reynolds-averaged governing equa-
tions for turbulent free-surface flow, and to use the resulting equations to determine
the origin of the surface current in high-Froude-number jet flows. To develop the
Reynolds-averaged equations, free-surface turbulent flow is treated as a two-fluid
flow separated by an interface. It is shown that the general Navier–Stokes equations
written for variable property flow embody the field equations applicable to each fluid,
as well as the boundary conditions for the interface and, therefore, can be applied
across the entire fluid domain, including the interface. With this as a starting point, a
formulation of the Reynolds-averaged governing equations for turbulent free-surface
flows can be developed rigorously. The resulting Reynolds-averaged equations are
written in terms of density-weighted averages, their derivatives, and the probability
density function for the free-surface position. These equations are similar to the
conventional Reynolds-averaged equations, but include additional terms which rep-
resent the average effect of the forces acting instantaneously on the free surface,
forces normally associated with the boundary conditions. These averaged equations
are applied to the interaction of a turbulent jet with the free surface in order to
establish, for arbitrary-Froude-number flows, the origin of the surface current, the
large outward velocity which occurs in a thin layer adjacent to the surface. It is shown
via an order-of-magnitude analysis that the outward acceleration associated with the
surface current results from a combination of the Reynolds-stress anisotropy and
the free-surface fluctuations. For low Froude number, the surface current is mainly
driven by the Reynolds stress anisotropy, consistent with the results of Walker (1997);
when the Froude number is large, the Reynolds-stress anisotropy is smaller and the
free-surface fluctuations make a significant contribution.

1. Introduction
Engineering predictions for turbulent flow near a free surface are of interest

in applications ranging from ship hydrodynamics to manufacturing processes. The
nonlinear nature of free-surface boundary conditions, along with the nonlinearity of
the underlying Navier–Stokes equations, make this problem analytically intractable,
and computationally challenging as well. The presence of a moving boundary presents
some difficulty even for simple laminar flows, because the location of the boundary
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is part of the solution of the fluid-flow problem. For turbulent flows, where many
of the details must be captured by modelling, this is even more difficult. Because
of these problems, some of the phenomena observed in free-surface flows remain
unexplained. The goals of this study were to develop an analytical framework within
which turbulent free-surface flow can be treated, and use that framework to address
one of the outstanding gaps in our understanding of these flows.

The first objective of the study described herein was the development of an
appropriate form of the Reynolds-averaged equations for turbulent free-surface flow.
In many real-world flows, the free surface moves in an unsteady manner in response
to the turbulent velocity and pressure fluctuations both above and below it. In
most cases, engineering predictions of these flows make use of the Reynolds-averaged
Navier–Stokes (RANS) equations. Because of the unsteady motion of the free surface,
the free-surface boundary ceases to be distinct in the context of these averaged
equations, and is ‘smeared’ over a region in space. The forces acting instantaneously
on the boundary are effectively distributed over this region in a manner determined
by the nature of both the free-surface fluctuations and the averaging process. The
approaches previously developed for turbulent flow near a free surface are for flows
with a steady free surface, either flat or with steady-state surface deformations (see
e.g. Tahara & Stern 1996; Naot & Rodi 1982). In these approaches, the averaged
form of the free-surface boundary conditions is applied at the steady free-surface
location. In these approaches, the generation of unsteady surface disturbances by the
subsurface turbulence has been ignored. If the surface is moving owing to the presence
of turbulence-generated disturbances, this approach is questionable, at best, since
application of the instantaneous free-surface boundary conditions at the instantaneous
free surface will not, under a time average, reduce to the time-averaged free-surface
boundary conditions applied at the average position of the free surface.

A candidate form for Reynolds-averaged equations appropriate for free-surface
flows will be developed below. It will be shown that the general form of the Navier–
Stokes equations, written for non-constant-property, incompressible, Newtonian flow
can be applied globally to a two-fluid-flow problem, i.e. the equations can be applied
across both fluids and the interface between them, in the manner of the level-set
method of Chang et al. (1996). Since these equations apply to both fluids plus the
interface, they can be time-averaged at a point in space to develop the Reynolds-
averaged equations. The resulting equations are most conveniently written in terms
of density-weighted averages, which reduce to simple time averages at positions
removed from the fluctuating free surface. These equations are identical to the RANS
equations except for some additional terms which appear on the right-hand side of
the momentum equations which represent the effects of the fluctuating density (caused
by the free-surface fluctuations) and the pressure forces acting instantaneously on the
surface. The latter appear as effective body forces in the mean equations of motion;
where in space they appear depends on the probability density function (p.d.f.) for
free-surface position.

The second objective of the study was to attempt to resolve a paradox arising
from the results presented by Walker (1997), involving the origin of the surface
current in turbulent free-surface flows. In that study, which was limited to low Froude
numbers (Froude number and Reynolds number are defined in terms of jet-exit
velocity and jet diameter), the surface current – the large transverse velocity parallel
to the free surface which develops when a turbulent flow such as a jet or wake
interacts with a free surface – was attributed to the near-surface turbulent-stress
anisotropy. As will be shown in the next section, high-Froude-number flows exhibit
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a similar (or even larger) surface current, but have much lower levels of anisotropy.
Application of an order-of-magnitude analysis similar to that used by Walker (1997)
to the above-described Reynolds-averaged equations shows that for arbitrary-Froude-
number flows, the surface current is caused by a combination of anisotropy and the
net effect of the pressure forces acting on the fluctuating free surface. In low-Froude-
number flows, the anisotropy dominates, whereas in high-Froude-number flows, the
fluctuating surface forces make a significant contribution.

In § 2 below, some experimental data is presented for turbulent free-surface jets
illustrating the turbulent structure, the surface current and the nature of the free-
surface fluctuations; in addition, the above-mentioned high-Froude-number paradox
is discussed. Then, in § 3, the Reynolds-averaged governing equations for free-surface
flow are derived. In § 4, the order-of-magnitude analysis of Walker (1997) is applied
to the Reynolds-averaged equations to determine the origin of the surface current for
arbitrary-Froude-number flows. The inferences arising from the analysis presented
in § 4 are shown to be consistent with experimental data in § 5, and the conclusions
drawn are summarized in § 6.

2. Background
In this section, some background on observations of free-surface turbulent flows

and the surface current is first presented. Experimental data for turbulence quantities
and surface elevation statistics are then presented to establish the key aspects of the
free-surface jets to be examined.

2.1. Turbulent free-surface jet spreading

When a turbulent shear flow such as a jet or a wake evolves near a free surface, a
vertically thin region of large transverse (outward) velocity develops adjacent to the
surface. This feature, dubbed the surface current by Anthony & Willmarth (1992),
has been observed in model-ship wakes (Walker & Johnston 1991), free-surface
jets (Anthony & Willmarth 1992; Walker, Chen & Willmarth 1995), and wakes of
surface-piercing flat plates (Logory, Hirsa & Anthony 1996; Longo, Huang & Stern
1998). Similar behaviour has also been observed in a temporally evolving round jet
(Mangiavacchi, Gundlapalli & Akhavan 1994). Thus, the surface current appears to
be a ubiquitous feature of turbulent free-surface flows.

The origin of this flow has been the subject of conjecture. Visualization studies have
related it to the interaction of tangential vorticity with the free surface (Mangiavacchi
et al. 1994; Walker et al. 1995) as have studies based on near-surface vorticity
measurements (Logory et al. 1996). Walker et al. (1995) proposed that this vortex/free-
surface interaction could be related formally to the anisotropy of the turbulence near
the free surface. Both Davis & Winarto (1980) and Launder & Rodi (1983) observed
similar spreading near the wall in initially axisymmetric wall jets. Launder & Rodi
(1983) conjectured that this phenomenon has its origin in the production of streamwise
vorticity by Reynolds-stress gradients. The occurrence of similar results in both wall
jets and free-surface jets led Anthony & Willmarth (1992) to conclude that the surface
current must be caused by the common kinematic boundary condition on the surface-
normal velocity (i.e. the surface-normal velocity vanishes at the boundary) not the
differing conditions on the tangential velocities.

The study of Walker (1997) examined the evolution of a low-Froude-number jet
interacting with a free surface. That study used an order-of-magnitude analysis to
determine the leading-order terms in the Reynolds-averaged Navier–Stokes equations
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which are responsible for the outward flow in the thin layer adjacent to the surface.
The origin of the surface current is traced to terms involving the anisotropy of the
turbulence near the free surface – specifically, the normal-stress difference, (v2 − w2)
where w and v represent the vertical and transverse velocity fluctuations, respectively.
In that study, it was shown that, near the surface, the transverse momentum equation
reduced to

U
∂V

∂x
+ V

∂V

∂y
= − ∂

∂y
(v2 − w2), (2.1)

where U is the streamwise (x-direction) velocity, V is the horizontal transverse (y-
direction) velocity, and the overbar indicates an average quantity. This result indicates
that the transverse (outward) flow which develops near the free surface is driven by
the gradient in the (v2 − w2) stress difference. If w2 vanishes at the free surface, as
required for zero-, or low-Froude-number flows, while v2 is unchanged, the transverse
flow can develop. If, however, w2 and v2 are comparable, no transverse flow will
develop.

The results of Walker (1997) are consistent with the conjecture of Anthony &
Willmarth (1992) which credits the vanishing of the surface-normal velocity W with
producing the surface current, as well as those that use the idea of vortex/free-surface
interaction (also related to the W = 0 condition at the free surface – see Walker 1997).
The discussion of Launder & Rodi (1983) in terms of streamwise vorticity seems to
be a step removed from the more simple explanation in terms of the momentum
equation, and therefore less desirable.

2.2. Some experimental results for turbulence structure in free-surface jets

One limitation of the Walker (1997) analysis is that it applies strictly only in the case
of zero Froude number. Many of the above-cited observations of the surface current
were in moderate- to high-Froude-number flows. At non-zero Froude numbers, the
anisotropy which was identified by Walker (1997) as the source of the surface current
can be considerably smaller; however, the surface current is not obviously affected.
Some other mechanism must therefore drive the surface current in non-zero-Froude-
number flows. In this section, some experimental results for free-surface jet flows
at equal Reynolds numbers and two different Froude numbers will be presented.
The Froude number and Reynolds number are defined in terms of jet-exit velocity
and the jet diameter. This will illustrate the similarities in the surface current at
low and high Froude number, and the differences in the near-surface anisotropy
levels. Measurements of the mean and fluctuating surface elevation level will also be
presented.

The experimental results are for two of the jets examined in Walker et al. (1995).
The data were obtained using a three-component laser velocimeter as described in
Walker et al. (1995) and the conditions and the instrumentation used are described
there in detail; however, the data presented here are more extensive than those in
Walker et al. (1995). In both cases the jets issued parallel to the free surface, at
uniform velocity Ue from a circular nozzle of diameter d, and the jet axis was fixed
at h = 2d below the undisturbed free surface. Both jet flows have a Reynolds number
Re = Ued/ν = 12 700, and the Froude numbers are Fr = Ue/

√
gd = 1.0 and 8.0,

where ν is the kinematic viscosity and g is the acceleration due to gravity. The Froude
and Reynolds numbers are based on Ue and d. The x-coordinate axis corresponds to
the jet axis, increasing in the streamwise direction, with the surface-normal coordinate
z positive upward, and the transverse coordinate y defined so that the coordinate
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system is right-handed. The origin of the coordinate system is on the jet axis at the
exit plane of the jet nozzle. In the following figures, all quantities as normalized with
Ue and d. In all the figures, the top edge of the figure indicates the undisturbed
free-surface location, z/d = 2.

Figure 1 shows the mean streamwise velocity and the mean cross-stream velocity
vectors, turbulence kinetic energy and stress anisotropy at x/d = 16 for Fr = 1.0 and
8.0. The streamwise position corresponds to where the turbulence in the jet has just
begun interacting with the free surface. Figures 1(a) and 1(b) show the mean velocity
fields for the two jets. The most striking feature of these images is their similarity. The
surface current is apparent in the vector plots, as well as the near-surface spreading
of the mean streamwise velocity distributions. For the high-Froude-number case, the
velocities associated with the surface current are slightly larger than its low-Froude-
number counterpart, while the streamwise velocities are slightly smaller. Figures 1(c)
and 1(d) show the turbulence kinetic energy fields for the two jets. The turbulence
level in the high-Froude-number flow (figure 1d) is roughly 20% lower than the
low-Froude-number flow. This was discussed by Walker et al. (1995), where it was
proposed that this energy is lost to the generation by the turbulence of waves which

radiate the energy away. The final two figures 1(e) and 1(f) show (v̂2− ŵ2), the stress-
anisotropy term identified by Walker (1997) as being responsible for the near-surface
jet spreading. For the low-Froude-number case (figures 1e) the anisotropy is small
except near the free surface. It obtains its maximum value near the free surface, above
the core of the jet. The anisotropy for the high-Froude-number flow is essentially
zero everywhere including the near-surface region. In this figure, the circumflex ̂
indicates the density-weighted-averaged quantities, equal to time-averaged quantities
at locations where fluid density remains constant throughout the averaging period;
this type of averaging is introduced below in § 3.

Figure 2 shows the mean streamwise velocity and the mean cross-stream velocity
vectors, turbulence kinetic energy and stress anisotropy at x/d = 32 for Fr = 1.0
and 8.0. The streamwise position corresponds to where the surface current is well
established. Figures 2(a) and 2(b) show the mean velocity fields for the two jets.
Again they are very similar, but the high-Froude-number jet exhibits slightly higher
streamwise mean velocity; this is probably due to the lower turbulence level and its
effect on the jet evolution. Again, the velocities associated with the surface current
are slightly larger in the high-Froude-number jet. Figures 2(c) and 2(d) show the
turbulence kinetic energy fields for the two jets. Again, the turbulence level in the
high-Froude-number flow (figure 2d) is lower than the low-Froude-number flow.

Figures 2(e) and 2(f) show (v̂2 − ŵ2). For the low-Froude-number case (figure 2e) the
anisotropy is again small except near the free surface, where it obtains its maximum
value, above the core of the jet. Again, the anisotropy for the high-Froude-number
flow is essentially zero in the deep portion of the flow, but near the surface, it has
risen to nearly 50% of that in the low-Froude-number flow. This is due to the
general reduction in the ‘local’ Froude number associated with the turbulent motions
with streamwise distance (owing to the increase in the turbulent lengthscale and the
decrease in the turbulent velocity scale).

The foregoing results clearly show that for the low-Froude-number jet, the near-

surface stress anisotropy, as characterized by (v̂2 − ŵ2), is large at both streamwise
locations examined, and that there was a significant surface current at both. For the
high-Froude-number jet, stress anisotropy is initially very small, and increases with
streamwise distance. The surface current, however, is comparable to that in the low-
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Figure 1. Plots of mean streamwise velocity and cross-stream velocity vectors, turbulence kinetic

energy level, and stress anisotropy at x/d = 16 for Fr = 1.0 and 8.0: (a) Û/Ue and (V̂ , Ŵ ) vectors

for Fr = 1.0; (b) Û/Ue and (V̂ , Ŵ ) vectors for Fr = 8.0; (c) k/U2
e for Fr = 1.0; (d) k/U2

e for

Fr = 8.0; (e) (v̂2 − ŵ2)/U2
e for Fr = 1.0; (f) (v̂2 − ŵ2)/U2

e for Fr = 8.0.
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Figure 2. Plots of mean streamwise velocity and cross-stream velocity vectors, turbulence kinetic

energy level, and stress anisotropy at x/d = 32 for Fr = 1.0 and 8.0: (a) Û/Ue and (V̂ , Ŵ ) vectors

for Fr = 1.0; (b) Û/Ue and (V̂ , Ŵ ) vectors for Fr = 8.0; (c) k/U2
e for Fr = 1.0; (d) k/U2

e for

Fr = 8.0; (e) (v̂2 − ŵ2)/U2
e for Fr = 1.0; (f) (v̂2 − ŵ2)/U2
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Froude-number flow (actually larger). Hence, the argument put forth by Walker (1997)
that the stress anisotropy is the cause of the near-surface jet spreading can at best
explain the behaviour of the low-Froude-number flow. This is not surprising, since
that analysis applies strictly only at Fr = 0. At high Froude number, an additional
mechanism must be at work. The nature of this additional mechanism can be seen
in the equations for Reynolds-averaged flow with a deformable free surface (to be
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derived below). It derives from the integrated effect of the pressure forces acting on
the fluctuating free surface. As a result, it appears that the free-surface fluctuations
play a key role in high-Froude-number jet spreading; surface elevation statistics will
be discussed next.

2.3. Surface elevation measurements

A laser-induced-fluorescence-based wave probe system was used to measure the
surface elevation. This is similar to that used by Duncan (1993) in his study of
stationary breaking waves. In this method, a fluorescent dye (Fluorescein disodium
salt) is added to the water at low concentration. A collimated laser beam oriented
perpendicular to the water surface enters from above. The beam was roughly 1 mm in
diameter at the free surface. The laser energy absorbed and re-emitted as fluorescence
yields a bright emission from the laser beam for the region below the free surface.
The laser beam is not visible above the free surface. The resulting step change in
intensity at the free surface is observed using a high-speed line-scan camera (EG&G
Reticon Model LC1912) connected to a Pentium-based computer. For Fr = 8.0, the
laser beam was imaged using a 70 mm lens, focused at infinity, with a +3 dioptre
close-up lens. The resulting resolution of the surface elevation measurements is about
50 µm. For Fr = 1.0, the surface fluctuations are much smaller and the 70 mm lens
was used in conjunction with an extension tube of about 1 m for a tenfold increase
in resolution.

The mean and r.m.s. surface elevation for each position were calculated using
ensembles of 1000 independent measurements. For Fr = 8.0, the averaging time
for each measurement is 1 ms and, for Fr = 1.0, 64 ms. The sampling rate in both
cases was 1 Hz. The intensity profiles were digitized and stored in the computer.
The digitized profiles were processed and the position of the water–air interface was
determined using calibration data. In the high-Froude-number case, we observed a
sharp transition in light intensity at the air–water interface, and the free surface
was defined as the position of maximum light intensity gradient. For the low-Froude-
number case, because of the high magnification used, the transition was more gradual,
and the intensity data was noisier. For this case, the free-surface position was defined
as the location where the light intensity was 45% of the maximum intensity (this
latter approach is slightly less accurate for clean data, but more immune to noise).

The significant regions of the free surface were mapped with the above-described
system. For Fr = 8.0, measurements covered a region from x/d = 4 to 38. The
horizontal extent of the measurements increased linearly with x so that y/x = 0.4.
For Fr = 1.0, the region from x/d = 4 to 26 was similarly covered.

Figures 3(a) and 3(b) show the r.m.s. surface-fluctuation level η′/d for Fr = 1.0
and 8.0, respectively. The η′ levels for the high-Froude-number flow are clearly more
than an order of magnitude larger than those for the low-Froude-number flow. For
Fr = 8.0, the maximum in η′ occurs at about x/d = 20 and extends about 12d in
the streamwise x-direction and about 2d in the transverse y-direction. The maximum
occurs above the jet axis, and η′ decreases monotonically with increasing y. For
Fr = 1.0, the maximum occurs above the jet axis at about x/d = 12, and the peak is
much lower and extends over a much smaller streamwise and lateral extent.

Figures 4(a) and 4(b) show the mean surface-elevation η/d for Fr = 1.0 and
8.0, respectively. For the high-Froude-number flow (figure 4b), the mean free-surface
elevation is similar to the r.m.s. surface elevation, shown above, with the peak located
above the jet axis at about x/d = 20, with comparable lateral extent of the peak
region, but with a streamwise extent of about half that of the peak in the r.m.s. surface
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and (b) x/d = 32: ◦, experimental data; ———, Gaussian distribution with mean and standard
deviation of experimental data.

elevation. The maximum mean surface elevation is about 20% of the maximum r.m.s.
surface elevation, and the mean surface slopes are of the order of 10−2. For the
low-Froude-number case (figure 4a), the mean free-surface deflection is nearly two
orders of magnitude smaller than that for the high-Froude-number flow.

The probability density function (p.d.f.) of the free-surface position f(η) will be
central to some results in later sections. For the low-Froude-number flow, the surface
elevation fluctuations are almost negligibly small, and so only the high-Froude-
number case will be examined. The p.d.f. of η for two streamwise positions, x/d = 16
and 32, above the jet axis y = 0 are shown in figures 5(a) and 5(b), respectively. Also
shown in each figure is a Gaussian distribution with the experimentally determined
mean and standard deviation for the data. From this comparison, it is clear that the
distributions are nearly Gaussian.

2.4. Summary

The foregoing results show that, for high-Froude-number flows, the surface current
occurs even though the anisotropy which characterizes low-Froude-number flows is
absent, or much reduced. The results of Walker (1997) would indicate a decrease in
the surface-current velocities with decreasing anisotropy. The main reason for this
discrepancy is that Walker (1997) began with the conventional RANS equations, with
the free-surface boundary conditions applied at the undisturbed free-surface location.
As was discussed in Walker (1997), this is appropriate only for low-Froude-number
flows where there are no significant, unsteady free-surface deformations. For high-
Froude-number flows, the conventional RANS equations are inappropriate, because
the position of the free surface is not well defined at high Froude number as a result
of the unsteady surface deformations. Therefore, the conclusion that the surface
current results from the stress-anisotropy is not general, and cannot be applied a
priori to high-Froude-number flows. The experimental results presented above are
evidence that this extension of the results of Walker (1997) to high-Froude-number
flows cannot be made.

One of the objectives of this study is to establish the origin of the surface current
for high-Froude-number flows in much the same way as Walker (1997) did for zero-
or low-Froude-number flows. A key requirement for the solution of this problem is
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a form of the Reynolds-averaged equations of motion which both admits surface
deformations, and handles them in a rigorous way. This is the other objective of the
study, and is discussed next.

3. The governing equations
In this section, a Reynolds-averaged form of the Navier–Stokes equations which

admits unsteady, turbulent surface deformations is developed. The resulting equations
are similar in character to the level-set formulation of Chang et al. (1996). The basis for
the equations is the Navier–Stokes equations for variable-property, incompressible,
Newtonian flow. First, it is shown that these equations actually contain both the
equations of motion and the interfacial boundary conditions for immiscible two-fluid
flow. The resulting equations are then time-averaged to yield the appropriate form of
the governing equations for the mean flow.

3.1. The governing equations for the instantaneous flow

Any attempt to derive the appropriate Reynolds-averaged form of the governing
equations must start from a set of equations which are able to represent the flow
accurately. We wish to time average the flow at a point in space while keeping track
of which phase is present; hence, the equations that are averaged must be applicable
to the entire region of interest – the region above the free surface as well as below.
The region above the free surface is usually a gas phase, such as air or water vapour,
or, in the case of a classical free surface, it is a void with zero density, viscosity, and
pressure.

It will now be established that the appropriate governing equations for a two-fluid
domain are the Navier–Stokes equations, written for non-constant fluid properties
(since the two fluids have different properties), and applied across the entire domain,
including the interface. It will be shown that these general equations can be reduced
to the constant property equations applied in the interior of the two fluid domains
and an appropriate set of boundary conditions applied at the interface. The continuity
equation for non-constant property fluids is given by

∂ρ

∂t
+

∂

∂xi
(ρUi) = 0, (3.1)

and momentum conservation is represented by

∂

∂t
(ρUi) +

∂

∂xj
(ρUjUi) = −∂P

∂xi
+

∂

∂xj

[
µ

(
∂Ui

∂xj
+
∂Uj

∂xi

)]
+ ρgi. (3.2)

Also, in incompressible flow, ρ is constant for a fluid particle, hence

Dρ

Dt
=
∂ρ

∂t
+Ui

∂ρ

∂xi
= 0. (3.3)

Subtracting (3.3) from (3.1) yields

∂Ui

∂xi
= 0. (3.4)

Equations (3.1) to (3.4) all apply over the entire two-fluid domain.
A level-set function H(xi, t) can be defined on the entire domain so that the two

fluids are separated by an interface corresponding to the level set

H(xi, t) = 0. (3.5)
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Here, H < 0 is the region occupied by fluid 0 and H > 0 indicates the region occupied
by fluid 1. To keep track of the fluid properties at the point of interest, an indicator
function I◦(xi, t), a unit step function, is defined to be unity in fluid 0 and zero in fluid
1, i.e.

I◦ = 1 for H(xi, t) < 0

= 0 for H(xi, t) > 0. (3.6)

Since I◦ is a unit step function which depends on H ,

∂I◦
∂xi

= −∂H
∂xi

δ(H),
∂I◦
∂t

= −∂H
∂t
δ(H), (3.7)

where δ is the Dirac delta function. A complementary indicator function I1 = 1− I◦
is also defined which indicates the second fluid domain.

The continuity equation (3.1) can be written explicitly, rather than implicitly, for
both fluid regions by recognizing the change in density:

∂

∂t
(ρ◦I◦ + ρ1I1) +

∂

∂xi
{(ρ◦I◦ + ρ1I1)Ui} = 0, (3.8)

where ρ◦ and ρ1 are the fixed densities of the two fluids in the regions identified by
I◦ and I1, respectively. (Here, it is assumed that the velocities are continuous across
the interface.) Expanding the derivatives and rearranging yields{

∂ρ◦
∂t

+
∂

∂xi
(ρ◦Ui)

}
I◦ + ρ◦

(
∂I◦
∂t

+Ui

∂I◦
∂xi

)
+

{
∂ρ1

∂t
+

∂

∂xi
(ρ1Ui)

}
I1 + ρ1

(
∂I1

∂t
+Ui

∂I1

∂xi

)
= 0. (3.9)

Making use of (3.7) and recognizing that ρ◦ and ρ1 are constants yields{
ρ◦
∂Ui

∂xi

}
I◦ +

{
ρ1

∂Ui

∂xi

}
I1 + (ρ1 − ρ◦)

{
∂H

∂t
+Ui

∂H

∂xi

}
δ(H) = 0. (3.10)

The three sets of terms in brackets apply in the two fluids, and at the interface,
respectively. The first two terms are just the constant-density continuity equations
written for the fluid regions as indicated by I◦ and I1. The third term is usually
called the kinematic boundary condition, and is the expression of mass conservation
at the interface; i.e. no mass may cross the interface. Since I◦ and I1 are non-zero
in mutually exclusive regions in space, and δ(H) is non-zero only on the boundary
between the two regions, the collections of terms multiplying I◦, I1 and δ(H) must
vanish independently. Hence,

∂Ui

∂xi
= 0 (3.11)

in either fluid, and

∂H

∂t
+Ui

∂H

∂xi
= 0 (3.12)

on the interface, where H(xi, t) = 0.



Reynolds-averaged free-surface flows 195

The momentum equations can be treated in a similar fashion. Writing (3.2) while
explicitly recognizing the two fluid regions yields

∂

∂t
{(ρ◦I◦ + ρ1I1)Ui}+

∂

∂xj
{(ρ◦I◦ + ρ1I1)UjUi} = − ∂

∂xi
(P◦I◦ + P1I1)

+
∂

∂xj

[
(µ◦I◦ + µ1I1)

(
∂Ui

∂xj
+
∂Uj

∂xi

)]
+ (ρ◦I◦ + ρ1I1)gi. (3.13)

This form of this equation assumes continuity in the velocities across the fluid
interface, but admits step changes in fluid properties and pressure across the interface.
(For non-trivial viscous flows, there will, in general, be a step change in pressure at
the interface; only in inviscid flows is the pressure required to be continuous across
the interface.) Expanding the derivatives and collecting terms yields

ρ◦
(
∂Ui

∂t
+Uj

∂Ui

∂xj

)
I◦+ρ1

(
∂Ui

∂t
+Uj

∂Ui

∂xj

)
I1 =

{
−∂P◦
∂xi

+
∂

∂xj

[
µ◦
(
∂Ui

∂xj
+
∂Uj

∂xi

)]
+ ρ◦gi

}
I◦

+

{
−∂P1

∂xi
+

∂

∂xj

[
µ1

(
∂Ui

∂xj
+
∂Uj

∂xi

)]
+ ρ1gi

}
I1

−
{
−P◦δij + µ◦

(
∂Ui

∂xj
+
∂Uj

∂xi

)
+ P1δij − µ1

(
∂Ui

∂xj
+
∂Uj

∂xi

)}
∂H

∂xj
δ(H), (3.14)

where δij is the Kronecker delta. Again, the collections of terms multiplying I◦, I1 and
δ(H) must vanish independently. This requires that

ρ

(
∂Ui

∂t
+Uj

∂Ui

∂xj

)
= −∂P

∂xi
+

∂

∂xj

[
µ

(
∂Ui

∂xj
+
∂Uj

∂xi

)]
+ ρgi (3.15)

in the regions defined by I◦ and I1, and that

−P◦δij + µ◦
(
∂Ui

∂xj
+
∂Uj

∂xi

)
= −P1δij + µ1

(
∂Ui

∂xj
+
∂Uj

∂xi

)
(3.16)

on the boundary defined by H(xi, t) = 0. This recovers the conventional form for
the momentum equations and the appropriate boundary conditions for the interface
for a two-fluid problem. For a flow with constant properties and no surface tension
(surface tension is discussed next), the momentum equations are given by (3.15), the
continuity equation is (3.11) and the kinematic and dynamic boundary conditions
are given by (3.12) and (3.16), respectively. Hence, the general governing equations
(3.1) and (3.2) embody both the constant property forms of the equations and the
boundary conditions and can therefore be applied across the entire fluid domain,
including the interface. This represents a formal justification of the level-set approach
to interfacial flow described by Chang et al. (1996) and others.

While it demonstrates that the variable-property Navier–Stokes equations can be
applied to a two-fluid domain, the foregoing derivation does not include surface
tension. The reason is that surface tension is not a continuum effect, and therefore
is not included in the continuum equations. The surface tension is, however, readily
incorporated into the dynamic boundary condition (3.16). Having done this, one can
then work ‘backward’ to the appropriate form of the Navier–Stokes equations for the
two-fluid problem which incorporates surface tension. In addition, it is often more
convenient to use a pressure with the hydrostatic contribution removed (‘piezometric’
pressure), which can be incorporated in a similar fashion. These are discussed next.

For a stationary fluid (Ui = 0), a difference in pressure between the two fluids
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can arise owing to the effects of surface tension. These non-continuum effects are
not represented in the continuum equations. Owing to surface tension, there will be
an increase in the pressure which is proportional to the curvature of the surface
∆P = γ/R, where R is the local radius of curvature of the interface (R−1 = R−1

1 +R−1
2 ,

where R1 and R2 are the principal radii of curvature of the free surface, Batchelor
1967). R is taken to be positive when the centre of curvature lies in the region defined
by I◦(xi, t). Written in terms of H(xi, t) (after Aris 1962), the curvature is given by

1

R
=

∂2H

∂xk∂xl

[
∂H

∂xk

∂H

∂xl
−
(
∂H

∂xm

∂H

∂xm

)
δkl

](
∂H

∂xm

∂H

∂xm

)−3/2

=
∂2H

∂xk∂xl
[nknl − δkl]

(
∂H

∂xm

∂H

∂xm

)−1/2

, (3.17)

evaluated at H(xi, t) = 0. Here, ni is the unit normal vector. If we consider only the
case of small slope surface slope ni ≈ (α, β, 1) where α and β are small parameters,
then (3.17) reduces to

1

R
≈ − ∂2H

∂xk∂xk

(
∂H

∂xm

∂H

∂xm

)−1/2

. (3.18)

Sometimes, the governing Navier–Stokes equations are written in terms of the
piezometric pressure, P ′ = P + ρgz where g2 = gigi, and gi is assumed to point in
the −z-direction. This is helpful when considering the effects of large gravity forces
(near-zero Froude number) because it eliminates from the governing equations the
body force term, which can overwhelm the other terms. The body force term then
appears in the boundary condition where it is easier to accommodate. Incorporating
the piezometric pressure P ′, and the surface tension above into (3.15), yields

ρ

(
∂Ui

∂t
+Uj

∂Ui

∂xj

)
= −∂P

′

∂xi
+

∂

∂xj

[
µ

(
∂Ui

∂xj
+
∂Uj

∂xi

)]
(3.19)

for the momentum equations, and

− (P ′1 − ρ1gz
)
δij + µ1

(
∂Ui

∂xj
+
∂Uj

∂xi

)
= −

(
P ′◦ +

γ

R
− ρ◦gz

)
δij + µ◦

(
∂Ui

∂xj
+
∂Uj

∂xi

)
,

(3.20)
evaluated on the surface H(xi, t) = 0, for the boundary condition.

These equations and boundary conditions for the two-fluid problem, written in
terms of the piezometric pressure and including surface tension, are equivalent to the
following set of equations for the explicit continuum formulation

∂

∂t
{(ρ◦I◦ + ρ1I1)Ui}+

∂

∂xj
{(ρ◦I◦ + ρ1I1)UjUi} = − ∂

∂xi

(
P ′◦I◦ + P ′1I1

)
+

∂

∂xj

[
(µ◦I◦ + µ1I1)

(
∂Ui

∂xj
+
∂Uj

∂xi

)]
+
[
(ρ1 − ρ◦) gz +

γ

R

] ∂H
∂xi

δ(H). (3.21)

The implicit continuum form will be

∂

∂t
(ρUi) +

∂

∂xj

(
ρUjUi

)
= − ∂

∂xi
P ′ +

∂

∂xj

[
µ

(
∂Ui

∂xj
+
∂Uj

∂xi

)]
+
[
(ρ1 − ρ◦) gz +

γ

R

] ∂H
∂xi

δ(H), (3.22)

where ρ = ρ◦I◦+ρ1I1, and similarly for viscosity and pressure. These differ from (3.2),
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above, via the inclusion of surface tension and the use of the piezometric pressure P ′.
These equations are equivalent to those used by Chang et al. (1996) as the basis for
their level-set method for interface problems.

3.2. The governing equations for the time-averaged flow

To describe the mean behaviour of turbulent flows, the governing equations for
the instantaneous flows can be time averaged. For two-fluid flows, separated by an
assumed stationary interface, the time-averaging process is usually applied to the
equations for the individual phases, and to the boundary conditions. For turbulent
flows, where the boundary location is inherently unsteady, that approach cannot
be implemented, since the boundary motions cannot be incorporated. Using the
continuity equation (3.1) and the momentum equation (3.22), which apply to the
entire field, the averaging process can be carried out in a rigorous way, accounting
for the unsteady motions in the free surface.

The continuity and momentum equations will be averaged in time. For this purpose,
the time average is defined as

Q(xi, t) =
1

T

∫ T

0

Q(xi, t) dt. (3.23)

It is assumed that the averaging time T will be much longer than the timescale for
the turbulent fluctuations, but much shorter than the timescale for the variation of
the mean flow (after Hinze 1975, pp. 6 and 20). Applying this averaging to either
indicator function yields the fraction of time F that the given fluid is present

1

T

∫ T

0

{I◦(xi, t) + I1(xi, t)} dt = F◦(xi, t) + F1(xi, t) = 1. (3.24)

Applying this average to a fluid property, say the density ρ, yields

ρ(xi, t) =
1

T

∫ T

0

{ρ◦I◦(xi, t) + ρ1I1(xi, t)} dt

= ρ◦F◦(xi, t) + ρ1F1(xi, t). (3.25)

Substituting the continuity equation (3.1) into the definition of the time average
(3.23) yields

∂ρ

∂t
+

∂

∂xi

(
ρUi

)
= 0. (3.26)

If we define a density-weighted average Ûi such that

ρ Ûi = ρUi, (3.27)

then the average continuity equation becomes

∂ρ

∂t
+

∂

∂xi

(
ρ Ûi

)
= 0. (3.28)

This density-weighted average, is essentially the Favre-average discussed by Hinze
(1975, p. 21), and is often used for compressible flows (see e.g. Blaisdell 1991). Note
that, at locations where fluid density is constant throughout the averaging period,
density-weighted average is equal to the time average.

For the instantaneous flow, the kinematic free-surface boundary condition (3.12)
is used as an evolution equation for the interface. It was shown above that this
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follows directly from the continuity equation. Similarly, an evolution equation for the
mean free-surface location can be obtained from the averaged continuity equation.
Expanding the time-averaged continuity equation yields

0 =
∂ρ

∂t
+

∂

∂xi

(
ρÛi

)
=

(
∂

∂t
+ Ûi

∂

∂xi

)
ρ+ ρ

∂Ûi

∂xi
, (3.29)

for ρ = ρ◦F◦+ρ1F1 = (ρ◦ −ρ1)F◦+ρ1, ∂ρ/∂xi = (ρ◦ −ρ1)∂F◦/∂xi. If we define G(xi, t)
such that F◦ = F◦(G) only, then

∂F◦
∂xi

= −∂G
∂xi

f(G), (3.30)

where f(G) = −∂F◦/∂G (and similarly for ∂F◦/∂t). Since F◦(xi, t) is the probability
of occurrence of the fluid indicated by I◦ at the given location (i.e. one minus the
cumulative probability density function for the free-surface position), f(G) can be
interpreted as the p.d.f. of the free-surface position, and G(xi, t) as the normalized
distance from the mean free-surface position (normalized so that the level curves of
G are lines of constant probability). Equation (3.29) can then be written as

0 =

{
ρ◦
∂Ûi

∂xi

}
F◦ +

{
ρ1

∂Ûi

∂xi

}
F1 + (ρ1 − ρ◦)

{
∂G

∂t
+ Ûi

∂G

∂xi

}
f(G), (3.31)

analogous to (3.10), or, in more compact form, as

0 =

(
∂G

∂t
+ Ûi

∂G

∂xi

)
f(G)− ρ

ρ◦ − ρ1

∂Ûi

∂xi
. (3.32)

This expression is the Reynolds-averaged equivalent of the kinematic boundary
condition, and can be thought of as an evolution equation for the mean free surface.
For time-averaged flows, G is analogous to H for the instantaneous flows; however,
G is defined in a slightly more restrictive fashion. This expression recognizes that the
free-surface location is ‘fuzzy’ in turbulent flows; it applies to the region where f(G) is
non-zero, but not at a specific location, since the instantaneous free-surface position
fluctuates. For the case where there are no free-surface fluctuations f(G) = δ(G) and

the divergence of Ûi goes to zero. Under these conditions (3.32) reverts to (3.12) and
G(xi, t) is effectively H(xi, t).

Attention is now turned to the momentum equation. If we define a Reynolds-type

decomposition Ui = Ûi + ui then, the left-hand side of the momentum equation (3.22)
is easily averaged to yield

∂

∂t

(
ρ Ûi

)
+

∂

∂xj

(
ρ Ûj Ûi

)
+

∂

∂xj

(
ρ ûjui

)
= ρ

[
∂Ûi

∂t
+ Ûj

∂Ûi

∂xj

]
+

∂

∂xj

(
ρ ûjui

)
. (3.33)

The average of the right-hand side of the momentum equation (3.22), excluding
the terms multiplied by δ(H), is

− ∂

∂xi
P ′ +

∂

∂xj

(
µSij
)
, (3.34)
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where Sij is the strain rate, defined as

Sij =
∂Ui

∂xj
+
∂Uj

∂xi
. (3.35)

The average viscous stress, in the second term in (3.34), can be written as

µSij = µŜij + 〈µSij〉

= µ

[
∂Ûi

∂xj
+
∂Ûj

∂xi

]
+ µ

[
∂̂ui

∂xj
+
∂̂uj

∂xi

]
+ 〈µSij〉, (3.36)

where

〈µSij〉 =
1

ρ
(ρ1µ◦ − ρ◦µ1)

[
1

T

∫ T

0

(F1I◦ − F◦I1) Sij dt

]
. (3.37)

The term 〈µSij〉 has the property that it will vanish when either ρ◦ = µ◦ = 0,
ρ1 = µ1 = 0, or at positions far removed from the interface where the density is
constant, as indicated by either F◦ = 0 and I◦ = 0, or F1 = 0 and I1 = 0. The ρ1 = 0,
µ1 = 0 case corresponds to the classical free-surface situation.

The last term in (3.22), that containing δ(H), represents the fluctuating surface
forces and is averaged to yield

1

T

∫ T

0

[
(ρ1 − ρ◦) gz +

γ

R

] ∂H
∂xi

δ(H)dt = (ρ1 − ρ◦)gz ∂H
∂xi

δ(H) + γ
∂H

∂xi

δ(H)

R
. (3.38)

By rewriting the terms involving (∂H/∂xi)δ(H) in terms of I◦ prior to averaging, it
can be shown that (3.38) yields

1

T

∫ T

0

[
(ρ1 − ρ◦) gz +

γ

R

] ∂H
∂xi

δ(H)dt =

[
(ρ1 − ρ◦) gz +

γ

〈R〉
]
∂G

∂xi
f(G), (3.39)

where 〈R(xi, t)〉−1 is the ‘effective’ mean surface curvature given by

1

〈R〉 =
∂H

∂xi

δ(H)

R

∂G

∂xi

[(
∂G

∂xk

∂G

∂xk

)
f(G)

]−1

. (3.40)

It should be noted that 〈R〉 is constructed in such a way that (3.39) for the time-
averaged flow is similar in form to the level-set form of the equations shown in (3.22)
for the instantaneous flow.

Upon combining these three sets of terms, the time-averaged momentum equation
for turbulent two-fluid flow is

ρ

[
∂Ûi

∂t
+ Ûj

∂Ûi

∂xj

]
=−∂P

′

∂xi
− ∂ρûiuj

∂xj
+

∂

∂xj

[
µ

(
∂Ûi

∂xj
+
∂Ûj

∂xi

)]
+

∂

∂xj

[
µ

(
∂̂ui

∂xj
+
∂̂uj

∂xi

)]

+
∂

∂xj
〈µSij〉+

[
(ρ1 − ρ◦) gz +

γ

〈R〉
]
∂G

∂xi
f(G). (3.41)

This equation, together with the continuity equation

∂ρ

∂t
+

∂

∂xi

(
ρ Ûi

)
= 0, (3.42)



200 W.-L. Hong and D. T. Walker

and the evolution equation for the mean free surface(
∂G

∂t
+ Ûi

∂G

∂xi

)
f(G)− ρ

(ρ◦ − ρ1)

∂Ûi

∂xi
= 0, (3.43)

constitute a complete set of governing equations for the flow.
The resulting equations (3.41) to (3.43) have several desirable characteristics. In

the limit of vanishing surface-elevation fluctuations, the mean fluid properties ρ and
µ become constant, the density-weighted averages reduce to simple time averages,
and the second and third terms containing viscosity in (3.41) vanish. The p.d.f.
f(G) becomes a delta function indicating the position of the free surface, and so
the G reduces to H and 〈R〉 reduces to R. Hence, the equations reduce to the
conventional RANS equations of the level-set form. In the limit of laminar flow,
they reduce to the level-set formulation of Chang et al. (1996). This is required for
the formulation to be physically correct. In addition, the quantities which appear in
the equations are measurable, and in some cases, are routinely measured, at present.
For example, the velocity statistics measured by laser velocimeter in the liquid phase
of an air–water flow (such as those shown above) are, in effect, density-weighted
averages, since the measurements are made only when the liquid phase is present
and the density of the air can be considered negligible relative to the density of
the water. This allows experimental verification of any predictions made using the
equations, and the use of experimental data in guiding the development of modelling
approaches.

It should be noted that the set of equations (3.41) to (3.43) are mathematically
exact, in the sense that no modelling has been introduced; however, they do not
represent a closed system of equations. As is the case with the usual Reynolds-
averaging process, additional unknowns are introduced owing to the loss of in-
formation. For the present set of equations, these additional unknowns are the
Reynolds stresses ûiuj , the fluctuating strain rate terms ∂ui/∂xj , the viscous stress
term 〈µSij〉, the effective mean surface curvature 1/〈R〉, and the p.d.f. of the sur-
face elevation f(G). For the unknowns beyond the Reynolds stresses, appropriate
turbulence models must be developed to allow the set of equations to be closed.
In addition, development of specific solution methodologies for the resulting closed
system of equations may be required. While both of these are beyond the scope of
the present study, the equations in the form presented above can be used in interpret-
ing observed behaviour in free-surface turbulent flows, as will be shown in the next
section.

4. High-Froude-number jet spreading
In this section, the above-developed equations are used to examine the origin of the

surface current in high-Froude-number jet flows. For a turbulent jet issuing beneath
a free surface, the jet initially evolves in a manner similar to a jet in an unbounded
medium – a deep jet. Eventually, the jet begins to interact with the free surface.
Once interaction with the free surface begins, it will be assumed that, except for a
thin layer near the surface, the jet continues to behave as a deep jet. (That this is a
reasonable assumption was demonstrated in Walker 1997.) In what follows, the form
of the Reynolds-averaged Navier–Stokes equations governing the behaviour of the
thin region near the free surface will be determined. The origin of the surface current
for this flow will then be examined.
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4.1. Governing equations

The governing equations derived in § 3 can be reduced under the assumption of the
ideal free-surface condition, ρ1 = 0. The time-averaged momentum equation (3.41)
becomes

ρÛj

∂Ûi

∂xj
= −∂P

′

∂xi
− ∂ρûiuj

∂xj
−
[
ρ◦gz − γ

〈R〉
]
∂G

∂xi
f(G)

+
∂

∂xj

[
µ

(
∂Ûi

∂xj
+
∂Ûj

∂xi

)]
+

∂

∂xj

[
µ

(
∂̂ui

∂xj
+
∂̂uj

∂xi

)]
, (4.1)

Equation (4.1) can be non-dimensionalized using the local characteristic scales of the
jet, U◦ for the velocity scale and ` for the lengthscale. These length and velocity
scales are representative of the local large-scale structures in the jet, i.e. the energy-
containing scales. Non-dimensionalization yields, for the momentum equations under
conditions of stationary flow,

Û ′j
∂Û ′i
∂x′j

= − 1

F◦
∂P ′′

∂x′i
− 1

F◦

∂F◦û′iu′j
∂x′j

− 1

F◦

[
z′

Fr2
l

− 1

Wel〈R′〉
]
∂G

∂x′i
f(G)

+
1

Rel

1

F◦
∂

∂x′j

[
F◦

(
∂Û ′i
∂x′j

+
∂Û ′j
∂x′i

)]
+

1

Rel

1

F◦
∂

∂x′j

[
F◦

(
∂̂u′i
∂x′j

+
∂̂u′j
∂x′i

)]
,

(4.2)

where F◦ = ρ/ρ◦, Rel = U◦`/ν◦ is the Reynolds number, Frl = U◦/
√
g` is the Froude

number, Wel = ρ◦U2◦`/γ is the Weber number, and all the variables are now non-
dimensional (indicated by the primes). These definitions of Reynolds number and
Froude number are strictly used for the order-of-magnitude analysis.

For a single lengthscale `, a single velocity scale U◦, and a fixed set of fluid
properties, only two independent dimensionless groups can be defined (i.e. the Weber
number is set by specifying Reynolds number and Froude number). As a result

Wel

Fr2
l

=
ρ◦ν

4/3◦ g1/3

γ

(
Rel

Frl

)4/3

= 2.94× 10−4

(
Rel

Frl

)4/3

, (4.3)

for water at standard conditions. For the free-surface jet to be examined below, where
the jet begins to interact with the free surface, the Reynolds number based on the
local large-scale structure is 12 700 and the Froude number is about 2.8. This yields
Wel/Fr

2
l ∼ 20 which indicates that, for this case, the effects of surface tension will

be small relative to those of gravity. The high Reynolds number and the lack of
no-slip boundaries together indicate that viscous effects will be negligible. Ignoring
these effects, the reduced form for the momentum equations is

ρÛj

∂Ûi

∂xj
= −∂P

′

∂xi
− ∂ρûiuj

∂xj
− ρ◦gz ∂G

∂xi
f, (4.4)

where the equations are now, again, in dimensional form.
It will be assumed that for the turbulent free-surface jet flows, the free surface

will be a single-valued function of the horizontal coordinates x and y. Under this
assumption, G will be defined as

G =
(z − η)

η′
, (4.5)
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Figure 6. Schematic of streamwise velocity contours in a plane normal to the jet axis illustrating
lengthscale definitions. (a) Streamwise velocity contours for a deep jet showing the (r, θ) coordinate
system and the characteristic lengthscale `. (b) Streamwise velocity contours for a free-surface jet
(after Anthony & Willmarth 1992) showing the (y, z) coordinate system, the characteristic lateral
lengthscale `s and vertical lengthscale δ and η′ for the surface-current layer.

where, η is the mean free-surface position and η′ is the r.m.s. of surface elevation.
The level surfaces of G represent surfaces of constant probability for the free-surface
location. The gradient of G is written as

∂G

∂xi
= − 1

η′

[(
∂η

∂x
+ G

∂η′

∂x

)
î +

(
∂η

∂y
+ G

∂η′

∂y

)
ĵ − k̂

]
. (4.6)

4.2. Order of magnitude analysis

The following development will follow closely the analysis of Walker (1997). It was
shown in that study that the evolution of the jet is unaffected by the free-surface
except for a thin layer adjacent to the surface. Hence, outside the surface layer, the jet
evolves as a deep jet. The key result from the deep jet analysis, as shown by Walker
(1997), is

1

ρ◦
∂P ′

∂r
= −∂u

2
r

∂r
, (4.7)

where r is the radial coordinate. In arriving at that result, a local turbulent velocity
scale u◦, where u2◦ ∼ U2◦/10, was introduced in addition to U◦ and `, which are the
maximum axial velocity and lateral lengthscale, respectively. Equation (4.7) relates
the change in mean pressure to the transverse gradients in the u2

r Reynolds stress.
Integrating (4.7) yields

P ′

ρ◦
+ u2

r = constant. (4.8)

It clearly shows that as the jet axis is approached from far away (where P ′ is constant),
the mean pressure drops in proportion to the increase in u2

r . As a result, the minimum
mean pressure will typically occur in the core of the jet where the turbulence level is
greatest.

When the jet grows to the extent that it interacts with the free surface, the surface
will begin to deform and a thin layer will form where the effects of the surface will
be manifest. This layer grows laterally at a higher rate than the subsurface portion
of the jet. The lateral lengthscale `s for the layer is larger than `, the lateral scale of
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the subsurface portion of the jet. A schematic of the resulting flow is shown in figure
6(b).

The following analysis will examine the region far enough downstream of the jet
exit that h/x is small (where h is the depth of the jet axis beneath the free surface –
see figure 6b), and the maximum axial velocity U◦ occurs near the free surface. In this
region, the velocity scales U◦ and u◦, used in the deep-jet analysis, are also appropriate
for the near-surface region. This behaviour occurs for x/d >∼ 20 (Walker et al. 1995).
In this streamwise region, outside the near-surface layer, the jet will behave as a deep
jet (Walker 1997).

For the near-surface region, vertical gradients could either be scaled using the
surface-layer thickness δ, or the free-surface fluctuation level η′. However, the exper-
imental data suggests η′ is substantially smaller than δ and so δ will be used, except
for terms which contain the surface fluctuation level explicitly. Using the appropriate
lengthscales to non-dimensionalize the terms in the continuity equation indicates that

the scale for the lateral mean velocity V̂ is U◦`s/x, and the scale for the vertical mean

velocity Ŵ is U◦δ/x. Since δ � x in this region, Ŵ � Û. At this point the magnitude
of `s is undetermined; however, it is expected to be smaller than x.

The above scaling can be applied to the momentum equations to identify the dom-
inant terms in the near-surface region. Combining (4.4) and (4.6), the z-momentum
equation, in Reynolds-averaged form, neglecting viscous and surface tension effects,
is given by

ρ

[
Û
∂Ŵ

∂x
+ V̂

∂Ŵ

∂y
+ Ŵ

∂Ŵ

∂z

]
= − ∂P ′

∂z
− ∂ρûw

∂x
− ∂ρv̂w

∂y
− ∂ρŵ2

∂z
− 1

η′
ρ◦gzf,

(4.9)(
δ

x

) (
δ

x

) (
δ

x

) (
∆P ′

ρ◦U2◦

x

δ

)(
Ruw

u2◦
U2◦

)(
Rvw

u2◦
U2◦

x

`s

)(
u2◦
U2◦

x

δ

)(
gx

U2◦

)
.

The second line of (4.9) shows the order of magnitude estimates for the terms, divided
by ρ◦U2◦/x, in a manner similar to that of Walker (1997). Note that δ is used as the
vertical lengthscale for all terms except the last, for which η′ is the proper vertical
scale. The order estimate for the final term reflects that zf/η′ ∼ O(1).

The first three terms in (4.9) are clearly negligible, since δ � x. The magnitude of
the pressure term is undetermined. The terms involving ûw and v̂w will be negligible
since Ruw � 1 and Rvw � 1 in the near-surface region (see e.g. Anthony & Willmarth
1992). The remaining three terms will be non-negligible for arbitrary-Froude-number
flows. Retaining all the non-negligible terms in (4.9) yields

∂P ′

∂z
= −∂ρŵ

2

∂z
− 1

η′
ρ◦gzf. (4.10)

This shows that for general, non-zero-Froude-number flows, surface disturbances
contribute to local mean pressure in the region where the p.d.f. is non-zero. For
zero-Froude-number flows, η′ goes to zero and the second term on the right-hand
side vanishes for the subsurface flow, but applies at the surface (it becomes part of the
boundary condition). For that case, the pressure gradient in the vertical direction is

determined by the gradient of the ŵ2 normal stress (ŵ2 = w2 for zero-Froude-number
flows), and ∆P ′ ∼ ρ◦u2◦, which is consistent with Walker (1997).
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At a given streamwise position, (4.10) can be integrated to yield

P ′(y, z◦) = P ′∞(y) + ρ◦ŵ2∞(y)− ρ(y, z◦)ŵ2(y, z◦)− ρ◦g
η′

∫ z◦

−∞
fz dz (4.11)

for the pressure at z = z◦ in the near-surface layer. Here, the ∞ subscript represents
the quantities evaluated at z → −∞, relative to the thin near-surface layer. The
major conclusion obtained from the z–momentum equation is that the mean pressure

P ′ in the near-surface layer is completely determined by the local level of ŵ2, the
free-surface fluctuation level η′ and the conditions at z → −∞, which, in this case, is
the portion of the jet which still behaves as a deep jet. Outside the near-surface layer,
where the flow behaves as a deep axisymmetric jet, (4.8) gives

P ′∞ = −ρ◦û2
r∞ + ρ◦gη ≈ −ρ◦ŵ2∞ + ρ◦gη. (4.12)

(The term ρ◦gη is added to account for mean surface elevation changes appropriately.)
Substituting (4.12) into (4.11) yields

P ′(y, z◦) = −ρŵ2(y, z◦)− ρ◦g
η′

∫ z◦

−∞
fz dz + ρ◦gη. (4.13)

This result shows that the pressure in the near-surface region can be written in terms

of the local ŵ2, the surface fluctuation distribution and the mean surface elevation. If it
is assumed that the surface elevation statistics are Gaussian (a reasonable assumption,
given the results shown above in figure 5),

f =
1√
2π

e−1/2G2

, (4.14)

and (4.13) becomes

P ′(y, z◦) = −ρŵ2 + ρ◦gη′f + ρgη. (4.15)

Attention is now turned to the y-momentum equation. It is anticipated that there

will be a larger-magnitude outward V̂ in the near-surface layer (and as a result
of continuity, a larger lateral lengthscale `s) than exists in the deep jet. The exact
relationship of these near-surface scales to those in the deep jet, however, remains to
be determined. The y–momentum equation is given by

ρ

[
Û
∂V̂

∂x
+ V̂

∂V̂

∂y
+ Ŵ

∂V̂

∂z

]
= −∂P

′

∂y
− ∂ρûv

∂x
− ∂ρv̂2

∂y
− ∂ρv̂w

∂z
− ρ◦gzf

∂G

∂y
,(

`s

x

) (
`s

x

) (
`s

x

) (
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U2◦`s

)(
Ruv

u2◦
U2◦

)(
u2◦x
U2◦`s

)(
Rvw

u2◦x
U2◦δ

)
(4.16)

where the second line again contains the order-of-magnitude estimates normalized by
ρ◦U2◦/x. The last term in (4.16) is expanded as,

−ρ◦gzf ∂G
∂y

= ρ◦
gzf

η′
∂η

∂y
+ ρ◦

gzf

η′
G
∂η′

∂y

O

(
gη

U2◦

x

`s

)
O

(
gη′

U2◦

x

`s

)
. (4.17)

The term containing the v̂w Reynolds stress will be negligible since v and w are
uncorrelated (Rvw � 1). Because Ruv < 1 and x/`s > 1, the ûv term is of lower order

than the lateral pressure and v̂2 gradients, and can be neglected as well.
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Walker (1997) showed that `s could not be so small that the advection terms were
negligible (this would result in inconsistencies in the equations), and so the advection
terms in (4.16) must be retained. The resulting form of the y-momentum equation is

ρ

[
Û
∂V̂

∂x
+ V̂

∂V̂

∂y
+ Ŵ

∂V̂

∂z

]
= −∂P

′

∂y
− ∂ρ v̂2

∂y
+ ρ◦

gzf

η′
∂η

∂y
+ ρ◦

gzf

η′
G
∂η′

∂y
. (4.18)

Using (4.15) to eliminate the local pressure from (4.18) yields the y-direction momen-
tum equation in the thin near-surface layer:

ρ

[
Û
∂V̂

∂x
+ V̂

∂V̂

∂y
+ Ŵ

∂V̂

∂z

]
=− ∂

∂y

[
ρ
(
v̂2 − ŵ2

)]
− g ∂

∂y
(ρ η)− ρ◦g ∂

∂y
(fη′)

+
ρ◦g
η′

[
ηf
∂η

∂y
+η′fG

∂η

∂y
+ηfG

∂η′

∂y
+η′fG2 ∂η

′

∂y

]
. (4.19)

The first term on the right-hand side is turbulence anisotropy, and all the others are
pressure force terms which are related to the surface fluctuation and mean free-surface
gradients. This result, which is more general than that in Walker (1997), indicates
that, for high-Froude-number flow with significant surface fluctuations and small
anisotropy, the surface current will be driven mainly by the pressure forces associated
with the surface fluctuations and mean free-surface slopes. On the other hand, for
zero Froude number, all terms associated with the free surface vanish, and the surface
current will be driven by the turbulence anisotropy, consistent with the results of
Walker (1997). Note that this equation applies only in the thin surface layer above
the region where the jet behaves like a deep jet.

Equation (4.19) can be integrated from z = η − δ to z = ∞ to determine the
total y-acceleration over the thin surface layer which drives the surface current. It
is assumed that δ is somewhat larger than η′ (δ > 3η′), and, therefore, the p.d.f. is
zero at the lower limit of integration (f|z=η−δ = 0). In addition, it is assumed that

(v̂2 − ŵ2)|z=η−δ � (v̂2 − ŵ2)|z=0. Integrating (4.19) then yields∫ ∞
η−δ

ρ

[
Û
∂V̂

∂x
+ V̂

∂V̂

∂y
+ Ŵ

∂V̂

∂z

]
dz = − ∂

∂y

[∫ ∞
η−δ

ρ(v̂2 − ŵ2)dz

]
− ρ◦gδ ∂η

∂y
− ρ◦g

2

∂η′2

∂y

≡ − ∂

∂y
〈ρ(v̂2 − ŵ2)〉 − ρ◦gδ ∂η

∂y
− ρ◦g

2

∂η′2

∂y
. (4.20)

Hence, the average acceleration over the thin surface layer is related to the density-
weighted integration of anisotropy, mean free-surface slope, and lateral gradient of
surface fluctuation levels. It should be noted that only the first and last terms on the
right-hand side of (4.20) are directly related to the turbulent velocity and free-surface
fluctuations. The term involving η affects the entire water column, and therefore does
not influence the near-surface region any more than it does the deep flow.

5. Comparison to experiment
The experimental data for the jet flows presented above can be used to verify that

the foregoing analysis is consistent with observed behaviour. Since the analysis applies
for x/d > 20, the data presented above for Fr = 1.0 and 8.0 at x/d = 32 will be

used. Figures 7(a) and 7(b) show Û normalized by Ued/x versus transverse position
y/x at the free surface z = 2d and at the level of the jet axis z = 0, respectively.
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Figure 7. Profiles of mean streamwise velocity Û normalized by Ue/(x/d) versus transverse co-
ordinate y/x at x/d = 32, at (a) the free surface (z = 2d), and (b) the centreplane (z = 0); and

mean transverse velocity V̂ normalized by Ue/(x/d) versus transverse coordinate y/x at x/d = 32,
at (c) the free surface (z = 2d), and (d) the centreplane (z = 0); 4, Fr = 8.0; ◦, Fr = 1.0.

The vertical symmetry plane of the jet corresponds to y = 0, on the left-hand edge

of the figures. It can be seen that Û is similar for the two Froude numbers both
at the free surface (figure 7a), and below the free surface (figure 7b). Figures 7(c)

and 7(d) show similar plots of V̂ for z = 2d, and z = 0. Although there is more
scatter in the data for Fr = 1.0 than for Fr = 8.0 (owing to the lower magnitude of
the velocities in the Fr = 1.0 flow), some clear similarities, and clear differences, are
observed. The subsurface flow is nearly identical for the two cases, as seen in figure
7(d). The maximum outward velocity at the free surface z = 2d, seen in figure 7(c), is
roughly 3–4 times that in the deep portion of the jet at z = 0, shown in figure 7(d).
In figure 7(c), it is clear that, for the high-Froude-number flow, the outward velocity
is as much as twice as large as that for the low-Froude-number jet.

To verify (4.20) using the experimental data, the Reynolds-stress-difference (aniso-

tropy) term 〈ρ(v̂2 − ŵ2)〉 was calculated by numerically integrating ρ(v̂2 − ŵ2) over
the near-surface region, from z = d to z = 2d. This implies that δ ≈ d, which is
consistent with the experimental data shown above for the Reynolds stress anisotropy
and the transverse velocity. The measured Reynolds-stress difference at z = d is

about one-tenth that at z = 2d, as is the transverse velocity V̂ , consistent with the
assumption that these quantities become small at the lower edge of the near-surface
layer. The result is plotted, along with the surface fluctuation term 1

2
ρ◦gη′2 and the

sum of the two terms, in figures 8(a) and 8(b) for the low- and high-Froude-number
flows, respectively. The corresponding lateral gradients of these terms are plotted in

figures 8(c) and 8(d), and ∂V̂ 2/∂y, indicative of the magnitude of the advection terms
in (4.20), is plotted in 8(e) and 8(f), for the two flows.
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Figure 8. Profile of the terms in (4.20) versus transverse coordinate y/x at x/d = 32: (a) for

Fr = 1.0: 4 −·−, 〈ρ(v̂2 − ŵ2)〉; ◦ · · · , 1
2
ρ◦gη′2; ———–, sum of both terms; all terms normalized

by (Ued/x)2; (b) for Fr = 8.0, symbols as in (a); (c) for Fr = 1.0: −·−, ∂〈ρ(v̂2 − ŵ2)〉/∂y; · · · ,
∂( 1

2
ρ◦gη′2)/∂y; ———–, sum of both terms; normalized by U2

e d/x
2; (d) for Fr = 8.0, symbols as in

(c); (e) for Fr = 1.0: ∂V̂ 2/∂y at free surface z = 2d normalized by U2
e d/x

2 (f) for Fr = 8.0, symbols
as in (e).

Comparison of figures 8(a) and 8(b) shows that the surface fluctuation 1
2
ρ◦gη′2 (the

dotted line) is smaller in the low-Froude-number flow (figure 8a) than in high-Froude-
number flow (figure 8b). Also, because of the larger anisotropy near the free surface

in low-Froude-number flows, 〈ρ(v̂2 − ŵ2)〉 (the dash-dot line) is larger in figure 8(a)
than in figure 8(b). The sum of the two terms (the solid line) in both high- and low-
Froude-number cases have comparable magnitude. Equation (4.20) shows that the
lateral acceleration associated with the surface current is related to lateral gradients

of the Reynolds-stress difference 〈ρ(v̂2 − ŵ2)〉 and the surface fluctuation 1
2
ρ◦gη′2;

both gradients are shown in figures 8(c) and 8(d), along with their sum. In the low-
Froude-number case (figure 8c), the lateral gradient of 1

2
ρ◦gη′2 is negligible, compared

with that of 〈ρ(v̂2 − ŵ2)〉. For high Froude number (figure 8d), the maximum lateral

gradient of 1
2
ρ◦gη′2 (the dotted line) is almost half the magnitude of the 〈ρ(v̂2 − ŵ2)〉

gradient (the dash-dot line). The sum of the lateral gradient of 〈ρ(v̂2−ŵ2)〉 and 1
2
ρ◦gη′2

(the solid line) is larger in the high-Froude-number flow. The plots of figure 8(e) and

8(f) show a larger outward acceleration ∂V̂ 2/∂y in the Fr = 8.0 case, consistent with
the data in figures 8(c) and 8(d).

These results indicate that the analysis of § 4 is consistent with observations for the
region near x/d = 32, where the interaction of the free surface and the submerged
turbulent jet is well established. For low-Froude-number flow, the surface fluctuations
are negligible and the anisotropy alone drives the outward flow of the surface current.
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For high-Froude-number flow, the weaker anisotropy is more than compensated for
by the surface fluctuations, and results in a slightly larger outward acceleration.

6. Conclusions
This study has presented a formulation of the governing equations for Reynolds-

averaged flow near a free surface. The resulting equations are written in terms of
density-weighted averages and the p.d.f. of the free-surface elevation. The form of the
continuity equation is identical to that of the conventional RANS equations, as is the
form of the momentum equations, except for the addition of terms associated with
the non-constant density, and terms which represent the effect of the forces acting
instantaneously on the free surface. The surface forces, which are normally associated
with the boundary conditions, are embedded in the field equations as apparent body
forces. The region where these additional terms appear is defined by the p.d.f. of
the surface elevation. An evolution equation derived from the averaged continuity
equation describes the mean free-surface location.

The resulting equations have several desirable characteristics. In the limit of van-
ishing surface-elevation fluctuations, the equations reduce to the conventional RANS
equations with separate boundary conditions. In the limit of laminar flow, they reduce
to the level-set formulation of Chang et al. (1996). In addition, the quantities which
appear in the equations are measurable and, in some cases, are routinely measured, at
present. This will allow experimental verification of any predictions made using the
equations, and the use of experimental data in guiding the development of modelling
approaches.

The newly developed governing equations were used to examine the evolution of an
initially axisymmetric jet interacting with a free surface. The purpose was to determine
the origin of the surface current – the large outward velocity which exists in a thin
layer adjacent to the surface. An appropriate form of the momentum equations for
the near-surface region, valid for the region far-enough downstream of the jet exit
that the maximum velocity occurs near the surface, was developed. It was shown
that outward acceleration near the surface results from the lateral gradient in the

near-surface anisotropy 〈ρ(v̂2 − ŵ2)〉, and from the lateral gradient of the surface
fluctuation level η′. This result is more general than that of Walker (1997), which
included only the anisotropy, but applies strictly to zero-Froude-number flows. There
is an additional contribution to lateral flow over the entire water column (not just
near the free surface) from the lateral gradient of the mean surface elevation η.

Comparison to available experimental data showed that the analysis is consistent
with observed behaviour in free-surface jets for x/d = 32. For low-Froude-number
flow, the surface fluctuations are negligible and the anisotropy alone appears to
drive the surface current. For high-Froude-number flow, the weaker anisotropy is
compensated for by the large free-surface fluctuation level and results in a slightly
larger outward acceleration. The outward velocity at the surface for the high-Froude-
number case is seen to be slightly larger, as would be expected.

This work was supported by the Office of Naval Research under Contract
Nos. N00014-96-C-0038 and N00014-99-M-0082 at ERIM, and Grant Nos. N00014-
94-1-1083 and N00014-97-1-0053 at the University of Michigan, all monitored by
Dr E. P. Rood. The data presented in this study is part of a set collected by a number
of undergraduate and graduate students over a three-year period, which represents
more than two thousand hours of data acquisition. The diligence of B. Wildes, D.
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